您当前所在位置: 首页» 人才队伍» 高级职称» 土壤改良研究室» 正高级

张会民

发布者:管理员发布时间:2019-12-16作者:来源:点击量:

【个人简历】

张会民中国农业科学院农业资源与农业区划研究所研究员、博士生导师,中国农业科学院祁阳红壤实验站站长,国家农业农村长期因子观测农业资源领域执行主任,国家重点研发项目首席科学家,中国农科院土壤健康重大任务首席科学家。长期从事土壤肥力演变与耕地质量提升以及红壤酸化改良方面的研究。以第一作者和通讯作者发表论文100余篇,其中SCI收录50余篇;出版著作10余部;制订农业标准4项,入选农业主推技术2项,授权国家发明专利10余项;获省部级成果奖5项(2项排名第一)。主持4项国家自然科学基金面上项目和多项国家级课题。

 

【主持项目】

[1]   国家重点研发项目“南方红黄壤耕地复合障碍形成机理与生态调控关键技术”(2024-2027),项目首席

[2]   中国农科院土壤健康重大任务(2024-2027),项目首席

[3]   国家重点研发课题“高产稻田的肥力变化与培肥耕作途径”(2016-2020年),课题主持人

[4]   国家“973”计划课题农田地力形成与演变规律及其主控因素2011-2015年),课题主持人

[5]   国家自然科学基金面上项目“长期绿肥替代氮肥对水稻土剖面团聚体钾素转化的作用机制”2025-2028年),主持人

[6]   国家自然科学基金面上项目土壤及团聚体钾素形态对红壤pH和有机质的响应机制2017-2020年),主持人

[7]   国家自然科学基金面上项目酸化红壤施用石灰后根际土壤钾素转化特征及机制2014-2017年),主持人

[8]   国家自然科学基金面上项目长期不同施肥下红壤钾素有效性的演变机理2011-2013年),主持人

 

【代表性著作】

[1]   张会民,柳开楼,马常宝,黄晶,等著. 中国耕地地力演变与可持续管理(稻田卷). 北京:中国农业出版社,2023.

[2]   张会民,张卫建,黄晶,樊红柱 等著. 典型稻作区土壤肥力时空变化与提升原理. 北京:科学出版社,2022.

[3]   张卫建,张俊,张会民 等著. 稻田土壤培肥与丰产增效耕作理论和技术. 北京: 科学出版社,2021.

[4]   张会民,徐明岗 等著.长期施肥土壤钾素演变. 北京: 中国农业出版社, 2008.

 

【代表性成果】

[1]   农业行业标准:水稻土地力分级与培肥改良技术规程,2021,排名第一

[2]   湖南省地方标准:酸性水稻土钾肥施用技术规程,2024,排名第一

[3]   中国农业科学院杰出科技创新奖,2021,排名第一

[4]   湖南省科技进步二等奖,2022,排名第一

[5]   国家发明专利:一种评估水稻产量的方法,2019,第一发明人

[6]   国家发明专利:基于作物相对产量差优化氮肥用量的方法,2024,第一发明人

[7]   适用新型专利:一种用于果园土壤培肥的深耕修复装置,2024,第一发明人

[8]   软件著作权:红壤稻田肥力综合评价系统V1.020192019SR0753124,排名第一

[9]   软件著作权:稻田肥力评价与推荐施肥系统V1.020192019SR0753117,排名第一

 

2015年以后通讯作者代表性论文】

[1]   Green manure substitution for chemical nitrogen reduces greenhouse gas emissions and enhances yield and nitrogen uptake in ricerice cropping systems. Field Crops Research, 2025, 322, 109715

[2]   Optimizing potassium and nitrogen fertilizer strategies to mitigate greenhouse gas emissions in global agroecosystems. Science of The Total Environment, 2024, 916, 170270

[3]   Impacts of long-term chemical nitrogen fertilization on soil quality, crop yield, and greenhouse gas emissions: With insights into post-lime application responses. Science of The Total Environment, 2024, 944 173827-173827

[4]   The impact of pristine and modified rice straw biochar on the emission of greenhouse gases from a red acidic soil. Environmental Research, 2022, 208, 112676

[5]   Mitigation of greenhouse gas emissions from a red acidic soil by using magnesium-modified wheat straw biochar. Environmental Research, 2022, 203, 111879

[6]   Effects of long-term organic and inorganic fertilization on greenhouse gas emissions and soil nutrient stoichiometry in a rice–rice–fallow cropping system.  Agriculture, Ecosystems and Environment, 2023, 357, 108695

[7]   Response of soil aggregate-associated potassium to long-term fertilization in red soil. Geoderma, 2019, 352, 160-170

[8]   Maize functional requirements drive the selection of rhizobacteria under long-term fertilization practices. New phytologist, 2024, 242 (3): 1275-1288

[9]   Soil organic carbon regulation by pH in acidic red soil subjected to long-term liming and straw incorporation. Journal of Environmental Management, 367, 2024, 122063

[10]      Impact of long-term fertilization on phosphorus fractions and manganese oxide with their interactions in paddy soil aggregates. Journal of Environmental Management, 2023, 333117440

[11]      Temporal and spatial characteristics of paddy soil potassium in China and its response to organic amendments: A systematic analysis. Soil and Tillage Research, 2024, 235, 105894

[12]      Gross nitrogen mineralization and nitrification at an optimal phosphorus input level in southern Chinese red soil with long-term fertilization. Soil and Tillage Research, 2023, 230105710

[13]      The relationship between soil aggregate-associated potassium and soil organic carbon with glucose addition in an Acrisol following long-term fertilization. Soil and Tillage Research, 2022, 222, 105438

[14]      Organic carbon distribution and soil aggregate stability in response to long-term phosphorus addition in different land-use types. Soil & Tillage Research, 2022, 215, 105195

[15]      Soil potassium regulation by changes in potassium balance and iron and aluminum oxides in paddy soils subjected to long-term fertilization regimes. Soil & Tillage Research, 2021, 214, 105168

[16]      Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil & Tillage Research, 2020, 198, 104569

[17]      Links between potassium of soil aggregates and pH levels in acidic soils under long-term fertilization regimes. Soil & Tillage Research, 2020, 197, 104480

[18]      Post-agricultural restoration of soil organic carbon pools across a climate gradient. Catena, 2021, 200, 105138

[19]      Soil potassium regulation by initial K level and acidification degree when subjected to liming: A meta-analysis and long-term field experiment. Catena, 2023(232), 107408:1-9

[20]      Long-term effect of fertilizations on yield sustainability, soil organic carbon sequestration and apparent phosphorus balance in acidic paddy soil. Journal of Soil Science and Plant Nutrition, 202222: 4282–4298

[21]      Interaction of liming and long-term fertilization increased crop yield and phosphorus use efficiency (PUE) through mediating exchangeable cations in acidic soil under wheat-maize cropping system. Scientific Reports, 2020, 10, 19828

[22]      Linkages between ecoenzymatic stoichiometry and microbial community structure under long-term fertilization in paddy soil: A case study in China. Applied Soil Ecology, 2021, 161, 103860

[23]      Impact of soil moisture regimes on greenhouse gas emissions, soil microbial biomass, and enzymatic activity in long‑term fertilized paddy soil. Environmental Sciences Europe (2024) 36:120

[24]      Impacts of long-term inorganic and organic fertilization on phosphorus adsorption and desorption characteristics in red paddies in southern China. PLoS One, 2021, 16, e0246428

[25]      Soil carbon (C), nitrogen (N) and phosphorus (P) stoichiometry drives phosphorus lability in paddy soil under long-term fertilization: A fractionation and path analysis study. Plos One, 2019, 14, e0218195

[26]      Changes in phosphorus fractions associated with soil chemical properties under long-term organic and inorganic fertilization in paddy soils of southern China. Plos One, 2019, 14, e0216881

[27]      Soil microbial biomass and extracellular enzymes regulate nitrogen mineralization in a wheat-maize cropping system after three decades of fertilization in a Chinese Ferrosol. Journal of Soils and Sediments, 2020, 21, 281-294

[28]      Partial substitution of chemical fertilizers with organic amendments increased rice yield by changing phosphorus fractions and improving phosphatase activities in fluvo-aquic soil. Journal of Soils and Sediments, 2020, 20, 1285-1296

[29]      Soil nutrients and heavy metals availability under long-term combined application of swine manure and synthetic fertilizers in acidic paddy soil. Journal of Soils and Sediments, 2020, 20, 2093-2106

[30]      The links between potassium availability and soil exchangeable calcium, magnesium, and aluminum are mediated by lime in acidic soil. Journal of Soils and Sediments, 2019, 19, 1382-1392

[31]      Tillage practices improve rice yield and soil phosphorus fractions in two typical paddy soils. Journal of Soils and Sediments, 2019, 20, 850-861

[32]      Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by manure in a rice-rice cropping system. Journal of Integrative Agriculture, 2023, 22(9): 2848–2864

[33]      Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers. Journal of Integrative Agriculture, 2023, 22(7): 2–13

[34]      Dynamics of organic carbon and nitrogen in deep soil profile and crop yields under long-term fertilization in wheat-maize cropping system. Journal of Integrative Agriculture, 2022, 21, 826-839

[35]      Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil. Journal of Integrative Agriculture, 2022, 21, 2134-2144

[36]      Change of soil productivity in three different soils after long-term field fertilization treatments. Journal of Integrative Agriculture, 2020, 19, 848–858

[37]      Comparison of carbon sequestration efficiency in soil aggregates between upland and paddy soils in a red soil region of China. Journal of Integrative Agriculture, 2019, 18, 1348-1359

[38]      Basic soil productivity of spring maize in black soil under long-term fertilization based on DSSAT model. Journal of Integrative Agriculture, 2014, 13, 577-587

[39]      Fertilizer combination effects on aggregate stability and distribution of aluminum and iron oxides. Journal of Plant Nutrition and Soil Science, 2022, 185, 251-263

[40]      Vertical distribution of phosphorus fractions and the environmental critical phosphorus level in acidic red soil under long‐term fertilizer and lime application in southern China. Journal of Plant Nutrition and Soil Science, 2021, 184, 585-595

[41]      Depth distribution of bulk and aggregate associated manganese oxides mediated by soil chemical properties in a long-term fertilized paddy soil. Journal of Soil Science and Plant Nutrition, 2020, 20, 2631-2642

[42]      Long-term application of chemical and organic fertilizers over 35 years differentially affects interannual variation in soil inorganic phosphorus fractions in acidic paddy soil. Eurasian Soil Science, 2021, 54, 772-782

[43]      我国水稻的肥料贡献率时空变化及影响因素. 中国农业科学2023,56(4):674-685

[44]      水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响. 中国农业科学, 2022, 55(23): 4651-4663

[45]      红壤性水稻土有机无机复合体中碳氮特征对长期施肥的响应. 中国农业科学, 2023, 56 (7): 1333-1343

[46]      30年来我国小麦和玉米秸秆资源时空变化特征及还田减肥潜力. 中国农业科学,  2023, 56(16) : 3140-3155

[47]      我国小麦和玉米相对产量差时空变异及其对氮肥的响应. 中国农业科学, 2023, 56 (14): 2724-2737

[48]      中国稻田土壤有机质时空变化及其驱动因素. 中国农业科学, 2020, 53, 2410-2422

[49]      35年红壤稻区土壤肥力时空演变特征以进贤县为例. 中国农业科学, 2020, 53, 3294-3306

[50]      长期不同施肥红壤磷素变化及其对产量的影响. 中国农业科学, 2019, 52, 3830-3841

[51]      基于Meta分析中国水稻产量对施肥的响应特征. 中国农业科学, 2019, 52, 1918-1929

[52]      长期化肥和有机肥施用对双季稻根茬生物量及养分积累特征的影响. 中国农业科学, 2017, 50, 3540-3548

[53]      中国稻田土壤基础地力的时空演变特征. 中国农业科学, 2016, 49, 1510-1519

[54]      长期施肥红壤及其有机无机复合体非交换性钾释放动力学. 中国农业科学, 2015, 48, 4748-4758

[55]      长期有机无机配施黑土土壤有机碳对农田基础地力提升的影响. 中国农业科学, 2015, 48, 4649-4659

[56]      不同县域水稻产量变化的关键土壤肥力因素分析. 农业工程学报, 2024, 40 (18): 90-99

[57]      中国农田小麦和玉米产量时空演变及驱动因素. 农业工程学报, 2022, 38, 100-108

[58]      1988-2018年中国水稻秸秆资源时空分布特征及还田替代化肥潜力. 农业工程学报, 2021, 37, 151-161

[59]      中国稻田土壤有效态中微量元素含量分布特征. 农业工程学报, 2020, 36, 62-70

[60]      中国主要旱作粮食耕地土壤钾素的时空演变特征. 土壤学报2023603):673-684

[61]      基于模糊数学(Fuzzy)法的中国水稻土肥力质量近30年的时空变化特征. 土壤学报2023602):355-366

[62]      中国主要旱作粮食耕地土壤钾素的时空演变特征. 土壤学报, 2022, 1-12

[63]      基于模糊数学(Fuzzy)法的中国水稻土肥力质量近30年的时空变化特征. 土壤学报, 2022, 1-12

[64]      中国稻作区土壤速效钾和钾肥偏生产力时空变化. 土壤学报, 2021, 58, 202-212

[65]      中国稻田土壤有效磷时空演变特征及其对磷平衡的响应. 土壤学报, 2021, 58, 476-486

[66]      长期施肥下红壤旱地解钾菌变化及其驱动因子. 土壤学报, 2020, 57, 183-194

[67]      南方酸化红壤钾素淋溶对施石灰的响应. 土壤学报, 2020, 57, 457-467

[68]      长期施肥对红壤旱地团聚体特性及不同组分钾素分配的影响. 土壤学报, 2018, 55, 443-454

[69]      长期施肥及石灰后效对不同生育期玉米根际钾素的影响. 土壤学报, 2017,54, 1497-1507

[70]      长期施肥对水稻土和紫色土钾素容量和强度关系的影响. 土壤学报, 2009, 46, 640-645

[71]      中国水稻相对产量差时空变异及其对氮肥的响应. 植物营养与肥料学报, 2023, 29(5): 789-80

[72]      长期施肥下红壤玉米关键生育期氧化亚氮排放差异及因素分析. 植物营养与肥料学报, 2023, 29(10): 1794-1804

[73]      中国主要粮食作物磷肥偏生产力时空演变特征及驱动因素. 植物营养与肥料学报, 2022, 28, 191-204

[74]      长期施钾红壤中铁铝氧化物调控有机无机复合体钾素分布.植物营养与肥料学报, 2024, 30(10): 1845–1857

[75]      东北典型县域稻田土壤肥力评价及其空间变异. 植物营养与肥料学报, 2020, 26, 256-266

[76]      30年中国稻区氮素平衡及氮肥偏生产力的时空变化. 植物营养与肥料学报, 2020, 26, 987-998

[77]      30年中国主要农田土壤pH时空演变及其驱动因素. 植物营养与肥料学报, 2020, 26, 2137-2149

[78]      绿肥和稻草联合还田提高土壤有机质含量并稳定氮素供应. 植物营养与肥料学报, 2020, 26, 472-480

[79]      长期施肥红壤稻田肥力与产量的相关性及县域验证. 植物营养与肥料学报, 2020, 26, 1262-1272

[80]      基于红壤稻田肥力与相对产量关系的水稻生产力评估. 植物营养与肥料学报, 2018, 24, 1425-1434

[81]      长期不同施肥模式下南方典型农田磷肥回收率变化. 植物营养与肥料学报, 2018, 24, 1630-1639

[82]      红壤酸化及石灰改良影响冬小麦根际土壤钾的有效性. 植物营养与肥料学报, 2016, 22, 1568-1577

[83]      长期施肥红壤钾有效性研究. 植物营养与肥料学报, 2015, 21, 1543-1550

[84]      长期施肥红壤钾素在有机无机复合体中的分布. 植物营养与肥料学报, 2015, 21, 1551-1562

[85]      长江中下游粮食主产区25年来稻田土壤养分演变特征. 植物营养与肥料学报, 2015, 21, 92-103

[86]      东北典型县域稻田不同肥力土壤剖面肥力变化特征及验证. 中国土壤与肥料. 20235: 148-157

[87]      稻田土壤肥力评价方法及指标研究进展. 中国土壤与肥料, 2017, 1-8

[88]      中国农耕区土壤有机质含量及其与酸碱度和容重关系. 水土保持学报,202034, 252-258

 

招生专业和研究方向

招生专业:土壤学

研究方向:土壤培肥与改良,土壤酸化,土壤健康

 

联系方式:

北京市中关村南大街12号中国农业科学院农业资源与农业区划研究所

电话:010-82105039

邮箱:  zhanghuimin@caas.cn

zhhm2007@163.com


打印』『关闭